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In this paper, a new methodology of evolutionary computations - An Adaptive Evolutionary 

Algorithm (AEA) is proposed. AEA uses a genetic algorithm (GA) and an evolution strategy 

(ES) in an adaptive manner in order to take merits of two different evolutionary computations : 

global search capability of GA and local search capability of ES. In the reproduction procedure, 

the proportions of the population by GA and ES are adaptively modulated according to the 

fitness. AEA is used for designing fuzzy logic controller (FLC) for a high-angle-of-attack 

flight system for a super-maneuverable version of F-18 aircraft. AEA is used to determine the 

membership functions and scaling factors of an FLC. The computer simulation results show that 

the FLC has met both robustness and performance requirements. 
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1. Introduction 

High-angle-of-attack flight is now relatively 

an important issue in designing flight control 

systems for super-maneuvering. Some tactical 

payoffs of the super-maneuverability can increase 

first-shot opportunities because of the confusion 

of adversary pilots. Though super-maneuvers are 

performed at a low speed without imposing un- 

due load factors to the pilot, the rapid rates of 

motion can be beyond the pilot's control. Thus a 

closed loop control of high-angle-of-attack flight 

is required for both the pilot and the aircraft. 

Designing such a control system could be further 
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complicated by highly nonlinear aerodynamics 

during transient motion with large amplitude. 

Earlier methods for the high-angle-of-attack 

flight control system are that a a variable gain 

scheduling output feedback control (Ostroff, 

1992 ; Adams et al., 1994) which provides a class 

of controller that is super-maneuverable with 

high performance over a wide operating range. 

While the earlier methods are nearly the mini- 

mum time maneuvers, they probably represent 

the best controllers based primarily on the linear 

design methodology in conjunction with some- 

what ad-hoc nonlinear corrections. Though the 

sliding mode has been employed for designing 

the flight control system, because of its direct 

applicability to the nonlinear system (Lee and 

Hedrick, 1994), it cannot lead to the development 

of the generic high-angle-of-attack flight control 

methodology because of the redundancy of con- 

trol effectors such as the elevator and the thrust 

vectoring nozzle. Consequently, a conventional 
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adaptive control scheme (Cho, 1993) is also lim- 

ited in generating correct control inputs to the 

aircraft. In such a situation, the FLC is a promis- 

ing tool for the high-angle-of-at tack flight. 

However, fuzzy rule and membership functions 

shape should be adjusted to obtain the best con- 

trol performance in the FLC (Won et al., 1999). 

Conventionally it is, as based on the experience of 

experts and trial and error method, hard to deter- 

mine membership functions suitable to system 

without the knowledge of the system. Recently, 

using evolutionary computations (ECs) which 

are probabilistic optimal algorithm based on the 

natural genetics and evolutionary theory, and 

tuning the membership function shape and fuzzy 

rules of the FLC with ECs, satisfactory perform- 

ances is obtained (Zhou and Lai, 2000 ; Juang et 

al., 2000; Shi et al., 1999). 

ECs are based on the principles of the genetics 

and natural selection. There are three broadly 

similar avenues of investigation in ECs : genetic 

algorithm (GA),  evolution strategy (ES), and 

evolutionary programming (EP) (Fogel, 1995; 

Goldberg, 1989 ; Gong et al., 1996, Schlierkamp- 

Voosen and Muhlenbein, 1996; Srinivas and Pa- 

tnaik, 1994 ; Spears, 1995 ; Fogel, 1995 ; Schwefel, 

1995; Michalewicz, 1992; Renders and Flasse, 

1996; Gen and Cheng, 1997). GA simulates the 

crossover and mutation of  natural systems, per- 

forming a global search (Goldberg, 1989), where- 

as, ES simulates the evolution of an asexually 

reproducing organism. ES can find a global min- 

imum. If combined with other ECs, it also could 

be efficient local search technique (Goldberg, 

1989). 
The performance of ECs is influenced by para- 

meters such as the size of population, the fitness, 
the probabili ty of crossover and mutation, etc. If 

these are not adequately selected, the execution 

time will be longer and premature convergence to 

local minimum can occur. To solve the above 

problems several approaches have been proposed. 

To enhance the performance of GA,  population 
size, the probabil i ty of crossover and mutation, 

and operation method is adaptively modified in 
each generation (Arabas et al., 1994; Schlier- 

kamp-Voosen and Muhlembein, 1996; Srinivas 

and Patnaik, 1994 ; Spears, 1995). To enhance the 

performances of ES and EP, the mutation para- 

meters are adapted during the run in ES and EP 

(Goldberg, 1989; Fogel et al., 1991; Schwefel, 

1995 ; Michalewicz, 1992). 

In the conventional method described above, 

parameter values and operator probabilit ies for 

the GA and ES are adapted to find solution effi- 

ciently. In this paper, however, we propose adap- 

tive evolutionary algorithm (AEA) ,  in which, the 

ratio of  population to which GA and ES will 

adapt is adaptively modified in reproduction ac- 

cording to the fitness. We use ES to optimize 

locally, while the GA optimizes globally. In other 

words, the resulting hybrid scheme produces 

improves reliability by using the "global" nature 

of the GA as well as the "local" improvement of 

the ES. The new AEA is applied to the search for 

optimal settings of the membership function's 

shapes and gains of the inputs and outputs of 

FLC for a high angle of  attack flight system for a 

super-maneuverable version of F-18 aircraft. 

2. Adaptive Evolutionary Algorithm 

2.1 Motivation 

GA, probabilistic optimization methods, is 

robust and it is able to solve complex and global 

optimization problem. But disadvantage is that 

it can suffer from excessive computation time 

before providing an accurate solution because of 

minimal use of prior knowledge and local in- 

formation (Renders and Flasse, 1996). ES, which 

simulates the evolution of asexually reproducing 

organism, has efficient local search capability. 

Hybrid EC (Gong et al., 1996) is formed to solve 

complex problem. 
In this paper, AEA is designed by combining 

the GA and ES to reach the global optimum 

accurately and reliably in a short execution time. 

In AEA, GA and ES operators are applied sim- 

ultaneously to the individuals of the present gen- 

eration to create the next generation. Individuals 
with a higher fitness value have the higher prob- 
ability of contributing one or more chromosomes 

to the next generation. This mechanism gives grea- 
ter rewards to either GA or ES operation depen- 
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ding on what produces superior  offspring. 

2.2 Adaptive evolutionary algorithm 
In A E A ,  the number  of  individuals  created by 

the G A  and ES operat ions is changed adaptively. 

An individual  is represented as a rea l -va lued 

chromosome,  which makes it possible to hybri- 

dize G A  and ES operations.  

ES forms a class of  opt imizat ion techniques 

motivated by the reproduct ion of  biological  sys- 

tem, and the popula t ion  o f  individuals  evolves 

toward the better solutions by means of  the 

mutat ion and selection operat ion.  In this paper, 

a (,u, /1)-ES is adopted.  That  is, only the ,4 

offspring generated by mutat ion competes for 

survival,  and the /z parents are completely re- 
placed in each generation. Also,  self-adapt ive 

mutat ion step sizes are used in ES. 

For  A E A  to self-adapt  G A  and ES operators,  

each individual  has an opera tor  code to deter- 

mine which opera tor  to use. Suppose a '0' refers 

to GA,  and a '1' to ES. At each generation, if it 

is more efficient to use the GA,  more 'O's should 

appear  at the end of  individuals.  But if  it is more 

efficient to use the ES, more ' l ' s  should appear. 

After reproduct ion by the roulette wheel selection 

according to the fitness, G A  operat ions (cros- 

sover and mutation) are performed on the in- 

dividuals  that possess the opera tor  code o f ' 0 '  and 

the ES operat ion (mutation) is pertbrmed on the 

individuals  that have an operator  code o f  ' l ' .  

Elitism is also used. The best individual  in the 

popula t ion  is reproduced both the G A  popula-  

tion and ES popula t ion  in the next generation. 

The major  procedures of  A E A  are as follows : 

In i t ia l i za t ion:  The initial popula t ion  is gen- 

erated randomly.  Fo r  each individual ,  randomly 

initialize opera tor  code. According  to the opera-  

tor code, G A  operat ions are performed on the 

individuals  with opera tor  code '0', while ES op- 

erat ion is applied where the operator  code is '1'. 

Evaluation and Reproduction : Using the selec- 

tion operator,  individual  chromosomes  are select- 

ed in propor t iona l  to their fitness that is evaluated 

using an objective function. After reproduct ion,  

G A  operat ions are performed on the individuals  
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having an opera tor  code of  '0' and the ES opera-  

tion is performed on the individuals  having an 

opera tor  code "1'. At every generation,  the per- 

centages of  T s  and '0's in the opera tor  code 

indicate the performance of  the G A  and ES oper-  

ator. 

Preservation of  Minimum Number of Indivi- 
duals : At each generation, A E A  sometimes may 

fall into a si tuation where the percentage of  the 

offspring by one operat ion is nearly 100k,  and 

the offspring by other  operat ions  dies off. There-  

fore, it is necessary for A E A  to preserve certain 

amount  of  individuals  for each EC operation.  In 

this paper, we randomly change the opera tor  code 

of  the individuals  with a higher percentage until 

the number  of  individuals  for each EC operat ion 

become more than a certain amount  of  indivi- 

duals to be preserved. The predetermined mini-  

mum number  of  individuals  to be preserved is set 

to 20,%o of  the popula t ion  size. 

Genetic Algorithm and Evolution Strategy: The 

rea l -va lued coding is used to represent a solut ion 

(Michalewicz,  1992 ; Gen and Cheng, 1997). Mo-  

dified simple crossover and uniform mutat ion are 

used as genetic operators.  The modified simple 

crossover opera tor  is the way to generate offs- 

< Before Crossover > < After Crossover > 

S~'= [v, ..... rk ..... v.] S~ "~= [v ...... v,. vk',, .... v,,'] 
t ~ o l  

s . = l w ,  . . . . .  w~ .... W.l s.. = [ w ,  . . . . .  w,. w i , ,  .... w,'] 

Ci'o~ove~ point 

Fig. 1 

where, VS'-a, Vj + a; Wj 
W/-a, ~ ~ a: ~; 
a,. a: : Random numbers from [0, I] 

!j-th gene of the vector S,, 
Wj :j-th gene 0fthe vector Sw 

n : Number of parameters 

Modified simple crossover method 

< Before Mutation > < After Mutation > 

t - I  
s , ' = l V ,  . . . . .  vk . . . . .  v. ]  ~ s~ : [v,, ,  .... v , . v k , ,  . . . .  v . ]  

# 
MuUilion poinl 

where, V~ : Random value between upper bound and lower bound 

Fig. 2 Uniform mutation method 
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trings population, selecting two strings randomly 

in parents population, as shown in Fig. 1. If 

crossover occurs in k - th  variable, selecting ran- 

domly two strings in t - th  generation, offstrings of  

t + 1-th generation is shown in Fig. 1. In uniform 

mutation, we selected a random gene k in an 

individual. If an individual and the k - th  compo- 

nent of the individual are the selected gene, the 

resulting individual is as shown in Fig. 2. 

Only the /l offspring generated by mutation 

competes for survival and the/2 parents are com- 

pletely replaced in each generation. Mutation is 

then performed independently on each vector ele- 

ment by adding a normally distributed Gaussian 

random variable with mean zero and standard 

deviation (d) ,  as shown in Eq. (1). After adap- 

ting the mutation operator for ES population, if 

the improved ratio of individual number is fewer 

than 8, the next generation standard deviation is 

decreased in proport ional  to decrease rates of 

standard deviation (ca), otherwise, the next gen- 

eration standard deviation is increased in pro- 

port ional  to increase rates of standard deviation 

(ci), as shown in Eq. (2) (Fogel, 1995). 

W + I = W + N ( 0 ,  d t) (1) 

c a × g  t, i f ¢ ( t )  

a t+ '=  c, x a ' ,  if ¢ ( t )  > (2) 
a ' ,  if ¢ ( t )  = 

where 

N(0 ,  a t ) :  

W 
¢(t) 

Vector of independent Gaussian ran- 

dom variable with mean of  zero and 

standard deviation a 

k- th  variable at t - th  generation 

Improved ratio of  individual number 
after adapting mutation operator for 

population of ES in t - th  generation 

Constants 

Elitism : The best individual in a population is 

preserved to perform both GA and ES operation 

in the next generation. This mechanism not only 

forces GA not to deteriorate temporarily, but 

also forces ES to use the information to guide 
subsequent local search in the most promising 

subspace. 
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3. Aircraft  Model  

A nonlinear longitudinal dynamic model of  a 

modified F-18 aircraft augmented with thrust 

vectoring nozzles is used for developing a fuzzy 

control system for high-angle-of-a t tack flight. 

The aerodynamic surfaces are used at normal 

flight conditions, where the elevators are primary 

control effectors for longitudinal motion. The 

thrust vectoring control is useful for h igh-angle-  

of-attack flight, low-dynamic-pressure operating 

conditions. The nonlinearity of  both the aero- 

dynamics and the thrust vectoring is preserved 

in the model. A schematic diagram of  the high- 

angle-of-at tack flight loop is illustrated in Fig. 3. 

Limiting the motion to the short period 

longitudinal mode for the high-angle-of-a t tack 

flight, the general 6 DOF (degree of freedom) 

equations representing the flight dynamics of a 

rigid aircraft are derived by Etkin (1982), which 

can be reduced to the fifth states model. Figure 4 

shows states, force, and moment concerning flight 

longitudinal motion. The model is described by 

five state variables;  angle-of-at tack (a) ,  speed 

( V ) ,  pitch angle (0) ,  pitch rate (q),  and altitude 

Fig. 3 Block diagram of flight control system 

,tL 

T, q"'~ * / 7 
• _ ( ,/' M/ /  

! V ,/ ,':'-~'~..~LCL C:G ~. / : . .  HORIZON 

w/' ~ -"~o~ ' ,')---o 
0N 

Fig, 4 Aircraft Ibrce and moment diagram 
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(h).  A nonlinear dynamic model of an F-18 

aircraft is described in Egs. ( 3 ) -  (7). 

m 6 t = m q +  Emg(cos  0 cos a + s i n  0 cos a) 
- L -  T . s i n  a +  T. cos a ] / V  (3) 

m I F = r a g ( c o s  0 s in  a - s i n  0 cos a) (4) 
- D -  T.  cos a +  Tz s in  a 

l .gl  = M + D ( l .  sin a -  l. cos a) (5) 
+ L ( lx cos a+  l~ s in  a) + ( l.t T x -  l . tT.) 

t~----q (6) 

h =  V s i n  7 = V s i n ( O - a )  (7) 

where, 

g ~ The gravitational acceleration 

(lx, l~), (lx~, l~t) : The position vector component 

from the center of gravity to 

the aerodynamic center and the 

engine thrust center 

L, D, M : Lift force, drag force and pitch- 

ing moment 

The components of the engine thrust force Z 

are expressed by the thrust vectoring nozzle 

deflection (6'n) in the pitch axis : 

Tx = T cos 8, (8) 

Tz = T s in  8, (9) 

The drag force (D) ,  lift force (L) ,  and pitching 

moment (M) are drawn by nonlinear aerodyna- 

mic coefficients, so called stability derivatives. 

The coefficients obtained from wind tunnel data 

are described by the very complex and nonlinear 

functions of the angle-of-attack,  Mach number 

and altitude. 

The model includes the actuators of elevators 

which have position limit from -- 10.5--24 [deg]. 

The actuators dynamics is modeled as a first- 

order lag with time constant 1/30 [sec]. It is the 

same with the case of  vane deflection of the thrust 
vectoring. But the absolute amplitude of nozzle 

deflection is limited to 20 ~deg], and its rate is 

limited at 80 [deg/sec].  These saturations result 

in hard nonlinear models of both the thrust 

vectoring nozzle deflection and the elevator angle 

(Be). 
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4. Design of Fuzzy Logic Controller 
Using Adaptive Evolutionary 

Algorithm 

Knowledge of experts, and trial and error 

method have conventionally been used to show 

FLC's  desired control performance, but recently 

many other approaches using EC are proposed 

(Won et al., 1999 ; Zhou et al., 2000 ; Juang et al., 

2000). Scaling factors such as input/output  and 

the membership function shape of FLC,  are are 

tuned by means of  AEA using GA and ES 

adaptively, as described in chapter 2. Figure 5 

shows the architecture for tuning the scaling fac- 

tors of  input/output  and the membership function 

shape of FLC using AEA. As shown in Fig. 5, 

the input signals to FLC are the angle-of-at tack 

deviation (e) and the change in the angle-of-  

attack error (de). The output signals of FLC are 

the elevator angle and the thrust vector nozzle 

angle. In this paper, the FLC uses the max-min 

inference and the center of gravity defuzzification. 

Figure 6 shows triangular membership func- 

tion, where linguistic variable NB means "Nega- 

tive Big", NM means "Negative Medium", NS 

",: +.( 
7 -  - - m  I 

J 
7 

Fig. 5 Block diagram of fuzzy logic controller using 
AEA 

I 'j  I ' ,  ~'~ 

d 

Fig. 6 Symmetrical membership functions 
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means "'Negative Small" etc. Because we use 7 

fuzzy variables (PB, PM, "", NM, NB) respec- 

tively, for input/output of FLC, the total mem- 

bership functions will be 21. Hence, 63 variables 

that include the center and width of all the mem- 

bership function will be adjusted. But it takes a 

long calculation time to 63 variables using AEA, 

and it suffers from undesirable converging char- 

acteristic. In this paper, we fixed the center of 

ZE to 0, and positive and negative membership 

functions are constructed symmetrical to the 0. So 

the number of parameters of FLC will be reduced 

to 21, which means 3 centers and 4 widths for 

each variable as shown in Fig. 6. 

The flowchart for design of FLC using the 

proposed AEA is shown in Fig. 7. The procedure 

of FLC using AEA is as follows : 

Step 1) Initialize population: Strings are ran- 

domly generated between the upper bo- 

unds and the lower bounds of the mem- 

bership functions and scaling factors of 

lnitllize Population I 

:1 

I 

• Cto~ovet and rnut.~zon * Mulalmn 

I 

ES 

where, P : Number  o f  population 

G : Specified generation 

Fig. 7 Flowchart for the design of FPSS using AEA 

s P . . . . .  I ' "  w . . . . .  iw,.  . . . . .  I 
$2 P:~ P~ W:~ W:m SF21 SF~ 

s., P . . . . . .  I P~ w . . . . .  iw% s~ . . . . .  Sr.,I * I 

where 

n " population size 

Pu " Center of the membership functions 

Wu " Width of the membership functions 

SFtj " Scaling factors 

• " Operator code 

Fig. 8 String architecture for tuning membership 
functions and scaling factors 

Step 2) 

FLC. The operator code is randomly set 

to decide whether each string is indivi- 

duals of GA or ES. The configuration of 

population is shown in Fig. 8. Scaling 

factors of the FLC are tuned using the 

AEA. 

Evaluation: Each string generated in 

Step 1) using the fitness function in Eg. 

(10). As shown in Eg. (10), the absolute 

deviation between phase angle velocity 

and phase angle desired is used. 

Fitness : 1 (10)  
N 

100+ ~, [ ah--arel [+penalty 
k = l  

where 

ak : 

a r e f  : 

N : 

Penalty : 

Step 3) 

Step 4) 

Phase angle velocity 

Phase angle desired velocity 

No. of data acquired during T second 

Penalty of pitch rate 

Reproduction : Roulette wheel reproduc- 

ed in proportional to the fitness is used. 

After reproducing, the individuals oper- 

ator code of '0' is inserted in the popu- 

lation of GA, and the individuals oper- 

ator code of ' l '  is inserted in the popu- 

lation of ES. 

Preservation of Minimum Number of In- 
dividuals : As both GA and ES become 

stronger, the minimum number of in- 

dividuals is guaranteed to prevent offsp- 

rings from being eliminated by the GA 

or ES. 
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Step 5) GA and ES operation: The individual 

operator code of  '0' accomplishes the 

crossover and the mutation in G A  

operators and generates offsprings, and 

the individual operator code of  '1' 

accomplishes the mutation in ES 

operator and generates offsprings. 

Step 6) Elitism : Elitism is used for reproducing 

the best individual of the fitness to GA 

and ES populat ion by each one. 

Step 7) Convergence criterion : Step 2)-Step 6) 

are iterated until being satisfied to the 

specified generation. 

5. S i m u l a t i o n  R e s u l t s  

A nonlinear longitudinal model is used to 

design a h igh-angle-of-a t tack flight controller. 

The proposed FLC is simulated under a nominal 

flight condition at an altitude of 4,500 m and a 

speed of around 0.3 Mach. Elevator angle and 

thrust vectoring nozzle angle are generated from 

the FLC. Table 1 shows the simulation parame- 

ters of AEA for tuning FLC.  Figure 9 shows the 

shape of the membership functions by AEA. 

Figure 10(a) shows the fitness values by A E A  in 

each generation. Figure 10(b) shows the number 

of individuals for G A  and ES in the AEA. As 

shown in Fig. 10, the number of individuals of  

GA is more than that of individuals of ES in early 

generation. But, from generation to generation, 

the number of individuals of  ES is more than that 

of individuals of GA. The A E A  produces the 

improved reliability by using the "global" nature 

of the GA initially as well as the "local" im- 

Table I Simulation parameters used AEA 

Methods AEA 

Size of population 50 

Crossover probability 0.85 

Mutation probability 0.05 

0.5 

Ca 0.95 

CI 1.05 

Number of Generation 200 

, ,  . . ,  o o  * 

i R n o p  

(a) The membership function of error 

o t p l o m  

(b) The membership function of error rate 

O U T P U T  

(c) The membership function of angle of elevator 

. a  , ,  ° , J  

O U T P U T  

(d) The membership function of angle of vector 
nozzle 

Fig. 9 Tuned membership functions using AEA 

provement capabilities of the ES from generation 

to generation. 

Longitudinal stick step inputs are used to dem- 

onstrate the performance of the FLC during non- 

linear simulations at a low angle-of-at tack of 

5 [deg], maximum lift of  40 [deg], high-angle 

of 60 [deg], pitch rate of  0 [deg/sec],  pitch angle 
of 6.3 [deg] and total speed of 135 [m/sec].  

Elevator angle, thrust vectoring nozzle angle, and 

magnitude of  thrust are given by --0.8 [deg], 0 

[deg], 1,450 [kgf], respectively. In order to check 

for the tracking performance of  a high-angle-  

of-attack flight, the proposed FLC is simulated 
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0 9 5 .  

0 S 6 -  

0 B 0 -  

0 7 5  • 

0 7 0  

r j-- y -  
f 

i0~ zoo 3o0  

G e n e r a t i o n  

(a) Fitness 

4 0 0  5 0 0  

m 

.E 
-~ t0. 

m 
E 5 .  

z 

o 

- - G A  

E S  

I I l l  I IN~ I  J l t ' !  i ~ l d ,  r ~ ~ ~ l l !  ~ : i  t [ ,  

. . . .  

w I I I 

1 0 0  2 0 0  3 0 0  4 0 0  5 0 0  

G e n e r a l i o n  

(b) Number of individuals of GA and ES in AEC 

Fig. 10 Fitness functions and number of individuals 
of GA and ES 

under the flight scenario illustrated in Fig. 11 (a) 

that is considering pitch up, and pitch down 

command. Therefore, the scenario is devised for 

the nonlinear simulation of transitional modes 

with a rapid changing flight command. The res- 

ulting angle-of-at tack response shows that FLC 

is to be comparable for the prescribed design 

goal. 
In Table 2, the proposed FLC is compared 

with the previous control methods (Ostroff, 1992 ; 

Mohler, 1993) in terms of reaching time and 

maximum pitch rate. The characteristic of the 

response are similar to that of the variable gain 

feedback control method reported by Ostroff 

(1992). The angle-of-at tack of variable gain ap- 

proach reached 55 [deg~ in just under 3.5 [sec~ 

and settling time to 60 [deg~ took about 6 [sec3. 

In prediction adaptive controller, the angle-of ;  

attack reached 55 [deg] in 2.1 [sec] and settling 

time to 60 [deg] took 3 [sec~. 
On the other hand, the angle-of-at tack of the 

proposed FLC starts at 5 [deg~ trim and reaches 

55 [deg] in less 1.2 [-sec], then slightly settles the 

initial command of 60 [deg] in 1.6 [sec]. In 

_7 ~ v  

,° .t ,4 

(a) Angle of attack 

(b) Pitch rate 

(c) Elevator angle 

2- 
(d) Thrust vectoring nozzle angle 

Fig. 11 Pitch-up and pitch-down maneuver 

Table 2, the proposed FLC comparing with the 

previous control methods in terms of reaching 

time and maximum pitch rate. From Tabel 2, the 

proposed FLC shows better performance than the 

previous control methods in terms of reaching 

time though maximum pitch rate is high. 

Table  2 Performance comparisons of controllers 

~ s  Ostroff Mohler 
--~ (1992) (1993) FLC 

55 [deg] 3.5 1.8 1.3 
reaching time [sec] 

60 [deg] 6.0 - 1.6 
reaching time [sec] 

Maximum pitch rate 38 - 64 
[deg/sec~ 
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: ° , .  

-~ ~ ° .  

G 

? k 
h 

(a) Angle of attack 

(b) Pitch rate 

iil 
Fig. 12 

T ~ m  ° I , ° , l  

(c) Elevator angle 
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modified in reproduction according to the fitness. 

By analyzed simulation result of the proposed 

FLC and conventional methods, the following 
conclusions are made. 

(I) As a result of applying AEA, when 

designing FLC,  in the early generation, it is 

shown the number of population of  G A  is more 

than that of population of ES and the number of 

population of  ES becomes larger as the number of  

generation increases. This shows that the global 

search is executed through GA in the early gener- 

ation and the local search is executed adaptively 

by means of ES as the number of generation 
increases. 

(2) The proposed FLC shows better control 

performance than Ostroft's variable gain output 

feedback control method in terms of  settling time 

and damping effect. To evaluate the robustness of 

FLC, we tested under other flight scenario. The 

proposed FLC can provide adaptabil i ty for 

abruptly changing flight condition, in the wide 

operating range. 
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R e f e r e n c e s  

To show the robustness, the proposed control- 

ler is tested under other flight scenario as illus- 

trated in Fig. 12(a). The resulting angle-of-at-  

tack response shows that the proposed FLC has a 

high adaptabil i ty for when flight condition is 

abruptly changed in the wide operating range. 

6. C o n c l u s i o n s  

In this paper, new A E A  is applied to search for 

optimal settings of  the membership function's 

shapes and gains of the inputs and outputs of 

FLC for a high angle-of-at tack flight system for 

a super-maneuverable version of F-18 aircraft. 

The AEA is an algorithm that ratio of population 
to which GA and ES will adapt is adaptively 
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